Quantifying the Human Health Benefits of Using Satellite Information to Detect Cyanobacterial Harmful Algal Blooms and Manage Recreational Advisories in US Lakes
This article presents an impact framework to estimate the socioeconomic benefits of satellite remote sensing for detecting cyanoHABs and managing recreational advisories at freshwater lakes.
Abstract
Significant recent advances in satellite remote sensing allow environmental managers to detect and monitor cyanobacterial harmful algal blooms (cyanoHAB), and these capabilities are being used more frequently in water quality management. A quantitative estimate of the socioeconomic benefits generated from these new capabilities, known as an impact assessment, was missing from the growing literature on cyanoHABs and remote sensing. In this paper, we present an impact assessment framework to characterize the socioeconomic benefits of satellite remote sensing for detecting cyanoHABs and managing recreational advisories at freshwater lakes. We then apply this framework to estimate the socioeconomic benefits of satellite data that were used to manage a 2017 cyanoHAB event in Utah Lake. CyanoHAB events on Utah Lake can pose health risks to people who interact with the blooms through recreation. We find that the availability of satellite data yielded socioeconomic benefits by improving human health outcomes valued at approximately $370,000, though a sensitivity analysis reveals that this central estimate can vary significantly ($55,000 – $1,057,000 in benefits) as a result of different assumptions regarding the time delay in posting a recreational advisory, the number of people exposed to the cyanoHAB, the number of people who experience gastrointestinal symptoms, and the cost per case of illness.
Authors
Signe Stroming
Blake Schaeffer